Journal of Diabetes & Metabolism

ISSN - 2155-6156

Citations Report

Journal of Diabetes & Metabolism : Citations & Metrics Report

Articles published in Journal of Diabetes & Metabolism have been cited by esteemed scholars and scientists all around the world. Journal of Diabetes & Metabolism has got h-index 43, which means every article in Journal of Diabetes & Metabolism has got 43 average citations.

Following are the list of articles that have cited the articles published in Journal of Diabetes & Metabolism.

  2024 2023 2022 2021 2020 2019

Total published articles

123 107 59 61 45 23

Research, Review articles and Editorials

44 54 37 40 21 22

Research communications, Review communications, Editorial communications, Case reports and Commentary

5 1 2 5 3 0

Conference proceedings

6 16 5 7 0 45

Citations received as per Google Scholar, other indexing platforms and portals

632 946 1156 1199 1039 1106
Journal total citations count 10648
Journal impact factor 12.50
Journal 5 years impact factor 18.23
Journal cite score 23.62
Journal h-index 43
Journal Impact Factor 2020 formula
IF= Citations(y)/{Publications(y-1)+ Publications(y-2)} Y= Year
Journal 5-year Impact Factor 2020 formula
Citations(2016 + 2017 + 2018 + 2019 + 2020)/
{Published articles(2016 + 2017 + 2018 + 2019 + 2020)}
Journal citescore
Citescorey = Citationsy + Citationsy-1 + Citationsy-2 + Citations y-3 / Published articlesy + Published articlesy-1 + Published articlesy-2 + Published articles y-3
Important Citations

O'Brien PD, Hur J, Hayes JM, Backus C, Sakowski SA, Feldman EL. BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological characterization and gene expression analyses. Neurobiology of disease. 2015 Jan 1;73:348-55.

Witzel II, Jelinek HF, Khalaf K, Lee S, Khandoker AH, Alsafar H. Identifying common genetic risk factors of diabetic neuropathies. Frontiers in endocrinology. 2015 May 28;6:88.

O'Brien PD, Hinder LM, Sakowski SA, Feldman EL. ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxidants & redox signaling. 2014 Aug 1;21(4):621-33.

Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, Thorand B, Roden M, Meisinger C, Ziegler D. Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care. 2013 Nov 1;36(11):3663-70.

Hernandez-Contreras DA, Peregrina-Barreto H, de Jesus Rangel-Magdaleno J, Renero-Carrillo FJ. Plantar Thermogram Database for the Study of Diabetic Foot Complications. IEEE Access. 2019 Nov 4;7:161296-307.

Singh J, Arora AS. Automated approaches for ROIs extraction in medical thermography: a review and future directions. Multimedia Tools and Applications. 2019:1-24.

Hernandez-Contreras DA, Peregrina-Barreto H, Rangel-Magdaleno JD, Orihuela-Espina F. Statistical Approximation of Plantar Temperature Distribution on Diabetic Subjects Based on Beta Mixture Model. IEEE Access. 2019 Mar 1;7:28383-91.

Astasio-Picado Á, Martínez EE, Gómez-Martín B. Comparison of Thermal Foot Maps between Diabetic Patients with Neuropathic, Vascular, Neurovascular, and No Complications. Current diabetes reviews. 2019 Dec 1;15(6):503-9.

Verma S. Comparative Analysis of Segmentation techniques for Progressive Evaluation and Risk Identification of Diabetic Foot Ulcers. In2019 4th MEC International Conference on Big Data and Smart City (ICBDSC) 2019 Jan 15 (pp. 1-6). IEEE.

Gauci J, Falzon O, Formosa C, Gatt A, Ellul C, Mizzi S, Mizzi A, Sturgeon Delia C, Cassar K, Chockalingam N, Camilleri KP. Automated Region Extraction from Thermal Images for Peripheral Vascular Disease Monitoring. Journal of healthcare engineering. 2018;2018.

Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno J. Similarity Measures to identify changes in Plantar Temperature Distribution in Diabetic Subjects. In2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) 2018 Nov 14 (pp. 1-6). IEEE.

Rahim MA. Detection of diabetic foot with infrared thermography (Doctoral dissertation).

Verma S. A Systematic Literature Review for Early Detection of Type II Diabetes. In2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) 2019 Mar 15 (pp. 220-224). IEEE.

Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno J, Orihuela-Espina F, Ramirez-Cortes J. Measuring changes in the plantar temperature distribution in diabetic patients. In2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 2017 May 22 (pp. 1-6). IEEE.

Astasio-Picado A, Martínez EE, Nova AM, Rodríguez RS, Gómez–Martín B. Thermal map of the diabetic foot using infrared thermography. Infrared Physics & Technology. 2018 Sep 1;93:59-62.

Rathod MD, Manza RR, Rathod DD. Early detection of peripheral neuropathy using thermography: a review. International Journal of Computer Applications. 2015;975:8887.

Adam M, Ng EY, Oh SL, Heng ML, Hagiwara Y, Tan JH, Tong JW, Acharya UR. Automated characterization of diabetic foot using nonlinear features extracted from thermograms. Infrared Physics & Technology. 2018 Mar 1;89:325-37.

Etehadtavakol M, Ng EY, Kaabouch N. Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm. Infrared Physics & Technology. 2017 Nov 1;86:66-76.

Alander JT. Indexed bibliography of genetic algorithms in medicine. University of Vaasa, Department of Electrical Engineering and Automation, Report. 1994:94-1.

Sousa P, Felizardo V, Oliveira D, Couto R, Garcia NM. A review of thermal methods and technologies for diabetic foot assessment. Expert review of medical devices. 2015 Jul 4;12(4):439-48.

Top