Natural Products Chemistry & Research

ISSN - 2329-6836

Mini Review - (2015) Volume 3, Issue 4

Bioactive Lignans: A Survey Report on their Chemical Structures?

Ahmed E Fazary1,2*, Mohammad Y Alfaifi3, Kamel A Saleh3, Mohammed A Alshehri3 and Serag Eldin I Elbehairi2
1Chemistry Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia, E-mail: [email protected]
2Applied Research Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El Zeraa Street, Agouza, Giza, Egypt, E-mail: [email protected]
3Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia, E-mail: [email protected]
*Corresponding Author: Ahmed E Fazary, Chemistry Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia, Tel: +96672418343 Email: ,


Lignans are polyphenols spread in a wide variety of plant-based foods, including seeds, whole grains, legumes, fruit, and vegetables. When consumed, lignan precursors are converted to the enterolignans, enterodiol and enterolactone, by bacteria that normally colonize the human intestine. Lignans have attracted considerable attention due to their pharmacological and biological activities. This review article is a survey on the molecular structure of about 276 new naturally occurring lignans obtained from different plant families. We classified seven main types according to their structural features, and provided a number of review reports published recently about lignans. A tabular compilation of the molecular structures of known lignans is presented at the end of this survey report. A total of 111 references were considered for this survey report.

Keywords: Lignans; Molecular structures; Bioactivities; Survey report


For centuries, the structural studies of natural products served as the principle driving force for the discovery of new chemical reactivity. The fact that natural products are an excellent reservoir of biologically active compounds. For long time, extracts from natural products have been a main source of folk medicines, and even today, many cultures still employ them directly for medicinal purposes. Natural product chemistry turned to an interdisciplinary science, where the success of a chemist would only be possible in close collaboration with biologists, pharmacologists, and chemists. Thus many novel biological activities could only have emerged from the natural products arena.

Among the classes of identified natural products, lignans, one of the largest families, have been studied intensively for their diverse structures and variety of biological activities. Lignans are widely distributed in nature, occurring in hundreds of plants all over the world. Many lignane structures have interesting biological, pharmacological, or medicinal activities, including inhibition of carcinogenesis and induction of differentiation in leukemia or teratocarcinoma cells. Lignans are structurally diverse organic compounds, characterized by a basic backbone modified in multiple ways, allowing the formation of more than 7000 naturally occurring lignan varieties, particularly with approximately 50 new lignans identified each year. The amount of research effort performed towards lignans has been striking increased dramatically since 1940. For example, over the periods 1940-1960 and 1960-present, the average number of refereed publications describing research involving lignans as a major component (within abstract, title, and keywords; estimated using Scopus search engine) was 11 and 7016, respectively. It is interesting to note that the publications concerned with lignans observed between 2000 (189 documents) and 2015 (420 documents) coincides with the most recent discoveries on occurrence, extraction, isolation, purification, classification, biosynthesis, biogenesis, and applications of lignans.

Lignans, a vast, abundant and diverse group of secondary metabolites distributed in higher plants generally derivatives of phenyl propanoids created naturally via peroxidases and laccases enzymes. They induce a structural diversity and mainly interesting bioactivities, thus, the new research has been dedicated to the development of effective novel methodologies for biosynthesis of lignans, analogs and hybrids [1-3]. A recent studies presents a variety of synthetic and biosynthetic methods and mechanistic schemes which mimic the most common and various lignans and norlignans organic skeletal (Scheme 1) [4,5]. Another recent work shows phytochemical and pharmacological properties of the isolated, purified anticancer lignans from Anthriscus sylvestris (L.) Hoffm. herbaceous plant [6].


Scheme 1: Molecular structures of different Lignans skeletal (I-VI).

The anti-cancerous, estrogen like, antiasthma anti-inflammation, antioxidant, antimicrobial, insecticidal, antihypertensive, hypocholesterolemic activities and hepatoprotective biological activities of dibenzylbutyro-lactone subgroup of lignans were reported recently [7]. A number of various key multi-step racemic and enantiospecific synthetic strategies of plant and mammalian epoxy and dibenzocyclooctadiene lignans and such as Diels-Alder reactions, Stobbe condensations, transition metal-mediated, Michael additions, alkylations, intermolecular/intramolecular aryl-aryl oxidative couplings, nitrile oxide cycloadditions, radical cyclisations, dianion and oxidative couplings were reviewed [8-11]. A group of clinically important antioxidant lignans extracted from lariciresinol, pinoresinol, odophyllum peltatum, linum, hyptis, anthriscus, juniperus, dysosma, medioresinol, syringaresinol, arctigenin and sesamin wild species were found to play a key role in protection against several hormones related diseases and breast, colon, and prostate cancer therapy [12-15]. The different possible mechanistic elucidations for the detected various bioactivities such as angiogenesis, anti-oxidation and gene suppression [13] were evaluated and studied.

The extraction, isolation, purification, biosynthesis, structural and spectral characteristics of aryltetralin lactone lignans [16] from Euphorbiaceae, Berberidaceae, Verbenaceae, Burseraceae, Acanthaceae, Taxus baccata L. [17] plants and coumarino, flavono, and stilbeno nonconventional lignans [18] were reported recently, as well evaluated for their anti-inflammatory, anti-nociceptive, anti-ulcerogenic, antimicrobial, functional nutrient additives, chemo-ecological, cytotoxic, and antioxidant as well as acetylcholinesterase, butyrylcholinesterase and lipoxygenase inhibitory activities [17,19-30]. Also, recent study showed that the physiologically significant concentrations of enterolignan-producing bacteria were leading to "in vitro" and "in vivo" activation of oestrogen receptors [13]. The metabolism, absorption and excretion of phyto-oestrogen dietary lignans were also reported [19]. Table 1 shows the molecular structures of more than 270 known lignans.

Lignan Name Molecular Structure Ref. Lignan Name Molecular Structure Ref.
Schizandrin image [31] Gomisin A image [32]
Deoxyschizandrin [33] Gomisin B
Gomisin C
image [34]
γ-Schizandrin image [35] Gomisin D image [36]
Isoschizandrin image [37] Gomisin F
Gomisin G
image [38]
Schisandrin C image [39] Gomisin P
Benzoylgomisin P
Tigloylgomisin P
Angeloylgomisin P
image [40-43]
Gomisin F R=OAng
Gomisin G R=OBz
image [44] Gomisin Q image [45]
Gomisin H image [46] Angeloylgomisin Q
Benzoylgomisin Q
image [41,46]
Angeloylgomisin H R=OAng
Tigloylgomisin H R=OTig
Benzoylgomisin H R=OBz
image [46] Gomisin R [47]
Gomisin J image [46] Gomisin S image [48]
(-)-Gomisin K1 image [49] Gomisin T image [48]
(+)-Gomisin K2
R1=OH, R2=OMe
(+)-Gomisin K3
R1=OMe, R2=OH  
image [49] Benzoylgomisin U image [50]
(-)-Gomisin L1
R1=OMe, R2=OH
(-)-Gomisin L2
R1=OH, R2=OMe
image [47] Acetyl binankadsurin A
Caproyl-biannkadsurin A R=OCap
image [51]
(±)-Gomisin M1
R1=OH, R2=OMe
(+)-Gomisin M2
R1=OMe, R2=OH
image [47] Heteroclitin A
Heteroclitin B R=OAng
Heteroclitin C R=OTig
image [52]
Gomisin N image [40] Heteroclitin G image [52]
Gomisin O
R1=OH, R2=H
Isogomisin O
R1=H, R2=OH
Angeloylgomisin O R1=OAng, R2=H
image [39,40,47] Tigloylgomisin O image [50]
Angeloylisogomisin O
Benzoylisogomisin O
image [40] Taiwankadsurin B image [53]
Schisantherin L
R1=OH, R2=OAng
Schisantherin M
R1=OTig, R2=OAng
Schisantherin N
Acetylschisantherin L
R1=OAc, R2=OAng
image [54] Interiotherin A image [55]
Schisantherin O image [54] Interiotherin B image [55]
Kadsulignan L
R1+R2=OCH2O, R3=OMe
Kadsulignan M
R1+R2=OCH2O, R3=OH
Kadsulignan N
image [56] Angustifolin A
Angustifolin B
Angustifolin C
image [56]
Schisantherin P image [56] Angeloylbinankadsurin B R=OAng
Acetylbinankadsurin B R=OAc
image [57]
Schisantherin Q image [56] Heteroclitin N image [58]
Schizanrin A image [59] Longipedunin C image [60]
Kadsumarin A image [59] Kadsuralignan A image [61]
Ananosin A image [62] Kadsuralignan B image [61]
Schizarin B
Schizarin C
Schizarin D
Schizarin E
image [63] Schizanrin K image [64]
Interiotherin C image [65] Schizanrin L image [64]
Schizanrin F
R1=OMe, R2=OBz
R1=OH, R2=OAng
image [66] Schizanrin M image [64]
Schizanrin H image [66] Renchangianin D image [67]
Renchangianin A
Renchangianin B
image [67] Rubriflorin A image [68]
Renchangianin C image [69] Rubriflorin B image [68]
Yunnankadsurin A image [70] Schizanrin N Schizanrin N image [64]
Yunnankadsurin B image [70] Heteroclitalignan A
R1=OBz, R2=OAc, R3=OH
Heteroclitalignan B
R1=OPro, R2=OAng, R3=OMe
Heteroclitalignan D
R1=OBz, R2=OAc, R3=OMe
image [71]
Schizanrin I
R1=OBz, R2=OBz
Schizanrin J
R1=OAng, R2=OAng
image [64] Longipedunin A
Longipedunin B
image [60]
Propinquanin A
R1=OMe, R2=OTig
Propinquanin B
R1=OH, R2=OBz
image [72] Propinquanin D image [72]
Propinquanin C image [72] Propinquanin E image [72]
Propinquanin F image [72] Schisandrene image [73]
Kadsuphilin A
1-Demethylkadsuphilin A R=OH
image [74] Kadsuphilin B image [74]
6-Epi-gomisin image [74] Kadsuphilin C R1+R2=OCH2O
Kadsuphilin E
image [75]
Rubrisandrin A
R1=OH, R2=OMe
Rubrisandrin B
R1=OMe, R2=OH
image [76] Kadsuphilin D R=OAc
Kadsuphilin F R=OBz
image [75]
Kadsuphilol A image [75] Kadsuphilol C image [75]
Kadsuphilol B image [75] Kadsuphilol D image [75]
Angeloyl-(+)-gomisin K3 image [77] Kadangustin B image [78]
Methylisogomisin O image [79] Kadangustin C image [78]
Kadsurindutin A
Kadsurindutin B
image [79] Neglschisandrin A image [80]
Kadsuralignan I
Kadsuralignan J
Kadsuralignan K
image [81] Neglschisandrin B image [82]
Kadsuphilin G
R1=OAc, R2=H
Kadsuphilin H
R1=OAng, R2=OH
image [82] Neglschisandrin C image [82]
Kadsuphilin I
R1=OH, R2=OBz
Kadsuphilin K
R1=OMe, R2=OH
image [82] Neglschisandrin D image [82]
Kadangustin A
Kadangustin D
Kadangustin E
Kadangustin F
Kadangustin G
image [78] Heteroclitin P
R1=OBz, R2=OAng
Heteroclitin Q
R1=OAc, R2=OBz
image [83]
Kadoblongifolin A
R1=OH, R2=OMe
Kadoblongifolin B
R1=OMe, R2=OH
Kadoblongifolin C
R1=OMe, R2=OMe
image [84] Tiegusanin A
R1=OMe, R2=OIsoval
Tiegusanin B
R1=OMe, R2=OIsobut
Tiegusanin C
R1=OBz, R2=OMe
image [85]
Tiegusanin K image [85] Kadsuphilol I image [86]
Tiegusanin L image [85] Kadsuphilol J image [86]
Tiegusanin M image [85] Taiwankadsurin A
R1=OBz, R2=OAc
Taiwankadsurin C
R1=OAc, R2=OBz
image [53]
Kadsuphilol K image [86] Arisanschinin F image [86]
Kadsuphilol L image [86] Arisanschinin G image [86]
Arisanschinin H image [86] Arisanschinin I image [86]
Arisanschinin K
Arisanschinin L R=OAng
image [86] Arisanschinin J image [86]
Schisanwilsonin A image [87] Schisanwilsonin C image [87]
Schisanwilsonin B image [87] Schisanwilsonin D image [87]
Schilancifolignan A image [88] Schilancifolignan B image [88]
Schilancifolignan C image [88] Taiwanschirin A
Taiwanschirin B
Taiwanschirin C
image [59]
Heteroclitin D
R1=OAng, R2=H
Heteroclitin E
R1=OAng, R2=OH
image [89] Interiotherin D image [65]
Schiarisanrin A
Schiarisanrin B
Schiarisanrin C
Schiarisanrin D
image [90] Schiarisanrin E image [64]
Heteroclitalignan C image [17] Kadsuphilol H image [75]
Kadsuphilol E
R1=OAng, R2=OBz
Kadsuphilol F
R1=OBz, R2=OAng
image [75] Kadsuphilin L image [82]
Kadsuphilol G image [75] Arisantetralone C image [86]
Kadsuphilin M image [82] Kadsutherin D image [91]
Heteroclitin I image [58,91] Heteroclitin O image [93]
Heteroclitin J image [85] Kadsuphilol M image [86]
meso-Dihydroguaiaretic acid image [92] Kadangustin H image [78]
Pre-gomisin image [40] Kadangustin I image [78]
Kadsuphilin J image [78] Heteroclitin F image [52]
Kadangustin J
Kadangustin K
image [78] Henricine B image [93]
Tiegusanin N image [85] Arisantetralone D image [86]
Enshicine image [94] Kadsuralignan C image [61]
image [94] Kadsuralignan H image [81]
image [85] Arisantetralone A
R1=OMe, R2=OH
Arisantetralone B
R1=OH, R2=OMe
image [86]
(7'R, 8'S)-3,4-Methylenedioxy-3',
image [85]      

Table 1: Molecular structures of 267 Known lignan.

A number of review articles reported between 1980 and 2000 about asymmetric synthesis approaches of lignans and stereo controlled syntheses techniques of unsymmetrically furofuran lignans, and on plant natural lignans, neolignans and their cancer chemoprevention, cardiovascular, antiviral, food and biotechnological applications [95-111].


This work was financially supported by King Khalid University and King Abdulaziz City for Science and Technology (KACST), Saudi Arabia.


  1. Zhang J, Chen J, Liang Z, Zhao C (2014) New lignans and their biological activities. ChemBiodivers 11: 1-54.
  2. Pan JY, Chen SL, Yang MH, Wu J, Sinkkonen J, et al. (2009) An update on lignans: natural products and synthesis. Nat Prod Rep 26: 1251-1292.
  3. Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44: 483-525.
  4. Magoulas GE (2014) PapaioannouBioinspired syntheses of dimerichydroxycinnamic acids (Lignans) and hybrids, using phenol oxidative coupling as key reaction, and medicinal significance thereof. Molecules 19: 19769-19835.
  5. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. Journal of Wood Science 53: 273-284.
  6. Olaru OT, Niţulescu GM, Orțan A, Dinu-Pîrvu CE (2015) Ethnomedicinal, Phytochemical and Pharmacological Profile of Anthriscus sylvestris as an Alternative Source for Anticancer Lignans. Molecules 20: 15003-15022.
  7. Mao J, Yu N-J, Yang Y, Zhao Y-M (2014) Biological activities of dibenzyl butyrolactone lignans, Research advances. Journal of International Pharmaceutical Research 41: 275-281.
  8. Pohjoispää M,Wähälä K (2013) Synthesis of ,4-dibenzyltetrahydrofuran lignans (9,9'-epoxylignanes). Molecules 18: 13124-13138.
  9. Liu Y, Chang J, Xie J (2012) Progress of aryl-aryl oxidative coupling reagents in the synthetic chemistry of dibenzocyclooctadiene lignans. Chinese Journal of Organic Chemistry 32: 2040-2053.
  10. Bouyssi D, Monteiro N, Balme G (2008) Transition metal-mediated strategies toward lignans and related natural compounds. Current Organic Chemistry 12: 1570-1587.
  11. Chang J, Reiner J, Xie J (2005) Progress on the chemistry of dibenzocyclooctadiene lignans. Chem Rev 105: 4581-4609.
  12. Gottlieb HE, Mervic M, Ghera E, Frolow F (1982) Conformational study of dibenzocyclo-octadiene systems related to the schizandrin-type lignans. J ChemSoc Perkin Trans 1: 2353-2354.
  13. Dar AA,Arumugam N (2013) Lignans of sesame: purification methods, biological activities and biosynthesis--a review. BioorgChem 50: 1-10.
  14. Landete JM (2012) Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Research International 46: 410-424.
  15. Kamal-Eldin A,Moazzami A, Washi S (2011) Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat Food NutrAgric 3: 17-29.
  16. Lamblin F,Hano C, Fliniaux O, Mesnard F, Fliniaux MA, et al. (2008) Interest of lignans in prevention and treatment of cancers. Med Sci (Paris) 24: 511-519.
  17. Sun YJ, Wang JM, Chen H, Hua HM (2013) Advances in studies on aryltetralin lactone lignans. Zhongguo Zhong Yao ZaZhi 38: 2051-2059.
  18. da Silva T, Lopes LM (2004) Aryltetralone lignans and 7,8-seco-lignans from Holostylisreniformis. Phytochemistry 65: 751-759.
  19. Kucukboyaci N, Sener B (2010) Biological activities of lignans from Taxus baccata L. growing in Turkey. Journal of Medicinal Plants Research 4: 1136-1140.
  20. Begum SA,Sahai M, Ray AB (2010) Non-conventional lignans: coumarinolignans, flavonolignans, and stilbenolignans. FortschrChem Org Naturst 93: 1-70.
  21. Clavel T,Doré J, Blaut M (2006) Bioavailability of lignans in human subjects. Nutr Res Rev 19: 187-196.
  22. Vettor M, Perugini P, Gagliardi S, Conti B, Genta I, et al. (2006) Topical application of lignans and phytosterols in seborrhoic skin. Journal of Applied Cosmetology 24: 123-129.
  23. Sefkow M (2005) Enantioselective synthesis of C(8)-hydroxylated lignans-early approaches and recent advances. Topics in Current Chemistry 243: 185-224.
  24. Yang LQ, Wu XY, Xu ZQ, Hou HR, Fu HZ (2005) Research progress on determination of lignans from Schiandrachinensis and its preparations. Zhongguo Zhong Yao ZaZhi 30: 650-653.
  25. Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22: 696-716.
  26. Harmatha J (2005) Structural abundance and biological significance of lignans and related plant phenylpropanoids. ChemickeListy 99: 622-632.
  27. McCann MJ, Gill CI, McGlynn H, Rowland IR (2005) Role of mammalian lignans in the prevention and treatment of prostate cancer. Nutr Cancer 52: 1-14.
  28. Webb AL, McCullough ML (2005) Dietary lignans: potential role in cancer prevention. Nutr Cancer 51: 117-131.
  29. Brown RCD (2004) Swain Synthesis of furofuran lignans. Synthesis 6: 811-827.
  30. Sung SH, Huh MS, Kim YC (2001) New tetrahydrofuran-type sesquilignans of Saururuschinensis root. Chem Pharm Bull (Tokyo) 49: 1192-1194.
  31. Yang Y, Zhang C, Wang Z, Pan X (2003) Advances in lignans with anti-HIV properties. Progress in Chemistry 15: 327-331.
  32. Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, et al. (2002) Plant cell factories as a source for anti-cancer lignans. Phytochemistry Reviews 1: 27-35.
  33. Cheng YB, Chang MT, Lo YW, Ho CJ, Kuo YC, et al. (2009) Oxygenated lignans from the fruits of Schisandraarisanensis. J Nat Prod 72: 1663-1668.
  34. Kochetkov NK, Khorlin AY, Chizhov OS (1962) Deoxyschizandrin-Structure and total synthesis. Tetrahedron Letters 9: 361-363.
  35. Wang CR, Sun R, Yanga CR, Chen YG, Song HC (2009) Two new lignans from the fruits of Schisandrasphenanthera. Nat Prod Commun 4: 1571-1574.
  36. Kochetkov NK, Khorlin AY, Chizhov OS, SheichenkoVI (1962) Chemical investigation of Schizandrachinensis. Communication 2. Structure of schizandrin 11: 850-856.
  37. Ikeya Y, Taguchi H, Yosioka I (1982) The constituents of SchizandrachinensisBaill. X. The structures ofschizandrin and four new lignans, (–)-gomisins L1 and L, (±)-gomisin M1 and (+)-gomisin M. Chem Pharm Bull 30: 132-139.
  38. Ikeya Y, Taguchi H, Yosioka I, Kobayashi H (1979) The constituents of SchizandrachinensisBaill. I. Isolation and structure determination of five new lignans, gomisin A, B, C, F and G, and the absolute structure of schizandrin. Chem Pharm Bull (Tokyo) 27: 1383-1394.
  39. Ikeya Y, Taguchi H, YosiokaI (1982) The constituents of SchizandrachinensisBaill. Isolation and structure of a new lignan, gomisin R, the absolute structure of wuweizisu C and isolation of schisantherin D. Chemical & Pharmaceutical Bulletin 30: 3207-3211.
  40. Ikeya Y, Taguchi H, Yosioka I, Kobayashi H (1978) The constituents of SchizandrachinensisBaill. The structures of two new lignans,gomisin N and tigloylgomisin. P Chem Pharm Bull 26: 3257-3260.
  41. Ikeya Y, Taguchi H, Yosioka I, Kobayashi H (1979) The constituents of SchizandrachinensisBaill. III. The structures of four new lignans, gomisin H and its derivatives, angeloyl-, tigloyl- and benzoyl-gomisin H. Chem Pharm Bull 27: 1576-1582.
  42. Ikeya Y, Taguchi H, Yosioka I (1980) The constituents of SchizandrachinensisBaill. VII. The structures of three new lignans, (–)-gomisin K1 and (+)-gomisins K2 and K. Chem Pharm Bull 28: 2422-2427.
  43. Ikeya Y, Taguchi H, Yosioka I (1979) The constituents of SchizandrachinensisBaill. The cleavage of the methylenedioxy moiety with lead tetraacetate in benzene, and the structure of angeloylgomisin Q. Chem Pharm Bull 27: 2536-2538.
  44. Ikeya Y, Ookawa N, Taguchi H, YosiokaI (1982) The constituents of SchizandrachinensisBaill. XI. The structures of three new lignans, angeloylgomisin O, and angeloyl- and benzoylisogomisin O. Chem Pharm Bull 30: 3202-3206.
  45. Ikeya Y, Kanatani H, Hakozaki M, Taguchi H, MitsuhashiH (1988) The constituents of SchizandrachinensisBaill. XV. Isolation and structure determination of two new lignans, gomisin S and gomisin T. Chem Pharm Bull 36: 3974-3979.
  46. Ip SP, Yiu HY, Ko KM (2000) Differential effect of schisandrin B and dimethyl diphenylbicarboxylate (DDB) on hepatic mitochondrial glutathione redox status in carbon tetrachloride intoxicated mice. Molecular and Cellular Biochemistry 20: 111-114.
  47. Chiu PY, Leung HY, Ko KM (2008) Schisandrin B enhances renal mitochondrial antioxidant status, functional and structural integrity, and protects against gentamicin-induced nephrotoxicity in rats. Biol Pharm Bull: 602-605.
  48. Ikeya Y, Sugama K, Okada M, MitsuhashiH (1991) Two lignans from Schisandrasphenanthera. Phytochemistry 30: 975-980.
  49. Ookawa N, Ikeya Y, Taguchi H, YosiokaI (1981) The constituents of Kadsura japonica Dunal. I. The structures of three new lignans, acetyl-, angeloyl- and caproyl-binankadsurin A. Chem Pharm Bull 29: 123-127.
  50. Yang XW, Miyashiro H, Hattori M, Namba T, Tezuka Y, et al. (1992) Isolation of novel lignans, heteroclitins F and G, from the stems of Kadsuraheteroclita, and anti-lipid peroxidative actions of heteroclitins A-G and related compounds in the in vitro rat liver homogenate system. Chem Pharm Bull 40: 1510-1516.
  51. Shen YC, Lin YC, Cheng YB, Kuo YH, Liaw CC (2005) Taiwankadsurins A, B, and C, three new C19 homolignans from Kadsuraphilippinensis. Org Lett 7: 5297-5300.
  52. Liu JS, Li L (1993) Schisantherins L-O and acetylschisantherin L from Kadsuracoccinea. Phytochemistry 32: 1293-1296.
  53. Chen DF, Zhang SX, Chen K, Zhou BN, Wang P, et al. (1996) Two new lignans, interiotherins A and B, as anti-HIV principles from Kadsura interior. J Nat Prod 59: 1066-1068.
  54. Liu JS, Li L (1995) Schisantherins P and Q, two lignans from Kadsuracoccinea. Phytochemistry 38: 1009-1011.
  55. Liu JS, Li L (1995) Kadsulignans L-N, three dibenzocyclooctadiene lignans from Kadsuracoccinea. Phytochemistry 38: 241-245.
  56. Ookawa N, Ikeya Y, Sugama K, Taguchi H, MarunoM (1995) Dibenzocyclooctadiene lignans from Kadsura japonica. Phytochemistry 39: 1187-1191.
  57. Kuo YH, Li SY, Wu MD, Huang RL, Yang Kuo LM, et al. (1999) A new anti-HBeAg lignan, kadsumarin A, from Kadsuramatsudai and Schizandraarisanensis. Chem Pharm Bull (Tokyo) 47: 1047-1048.
  58. Sun QZ, Chen DF, Ding PL, Ma CM, Kakuda H, et al. (2006) Three new lignans, longipedunins A-C, from Kadsuralongipedunculata and their inhibitory activity against HIV-1 protease. Chem Pharm Bull (Tokyo) 54: 129-132.
  59. Li HR,Feng YL, Yang ZG, Wang J, Daikonya A, et al. (2006) New lignans from Kadsuracoccinea and their nitric oxide inhibitory activities. Chem Pharm Bull (Tokyo) 54: 1022-1025.
  60. Shen YC, Cheng YB, Lan TW, Liaw CC, Liou SS, et al. (2007) Kadsuphilols A-H, oxygenated lignans from Kadsuraphilippinensis. J Nat Prod 70: 1139-1145.
  61. Kuo YH, Wu MD, Huang RL, Kuo LM, Hsu YW, et al. (2005) Antihepatitis activity (anti-HBsAg and anti-HBeAg) of C19 homolignans and six novel C18 dibenzocyclooctadiene lignans from Kadsura japonica. Planta Med 7: 646-653.
  62. Chen DF, Zhang SX, Kozuka M, Sun QZ, Feng J, et al. (2002) Interiotherins C and D, two new lignans from Kadsura interior and antitumor-promoting effects of related neolignans on Epstein-Barr virus activation. J Nat Prod 65: 1242-1245.
  63. Wu MD, Huang RL, Yang Kuo LM, Hung CC, OngCW, et al. (2003) The anti-HBsAg (human type B hepatitis, surface antigen) and anti-HBeAg (human type B hepatitis, e antigen) C18 dibenzocyclooctadiene lignans from Kadsuramatsudai and Schizandraarisanensis. Chem Pharm Bull: 1233-1236.
  64. Chen M, Liao Z, Chen DF (2004) Four new dibenzocyclooctadiene lignans from Kadsurarenchangiana. Helvetica ChimicaActa 87: 1368-1376.
  65. Li L, Ren HY, Yang XD, Zhao JF, Li GP, et al. (2004) Rubriflorins A and B, two novel partially saturated dibenzocyclooctadiene lignans from Schisandrarubriflora. Helvetica ChimicaActa 87: 2943-2947.
  66. Ma WH, Ma XL, Huang H, Zhou P, et al. (2007) Dibenzocyclooctadiene lignans from the stems of Kadsurainduta and their antiviral effect on hepatitis B virus. Chemistry & Biodiversity 4: 966-972.
  67. Jia ZW, Liao Z (2005) Chen Two new dibenzocyclooctadiene lignans from the water extract of Kadsuraspp. Helvetica ChimicaActa 88: 2288-2293.
  68. Wang W, Liu J, Liu R, Xu Z, Yang M, et al. (2006) Four new lignans from the stems of Kadsuraheteroclita. Planta Med 72: 284-288.
  69. Xu L, Huang F, Chen S, Chen S, Xiao P (2006) A new triterpene and dibenzocyclooctadiene lignans from Schisandrapropinqua (WALL.) BAILL. Chem Pharm Bull (Tokyo) 54: 542-545.
  70. Choi YW, Takamatsu S, Khan SI, Srinivas PV, Ferreira D, et al. (2006) Schisandrene, a dibenzocyclooctadiene lignan from Schisandrachinensis: structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J Nat Prod 69: 356-359.
  71. Shen YC,Liaw CC, Cheng YB, Ahmed AF, Lai MC, et al. (2006) C18 dibenzocyclooctadiene lignans from Kadsuraphilippinensis. J Nat Prod 69: 963-966.
  72. Shen YC, Lin YC, Ahmed AF, Cheng YB, Liaw CC, et al. (2007) Four new nonaoxygenated C18 dibenzocylcooctadiene lignans from Kadsuraphilippinensis. Chem Pharm Bull (Tokyo) 55: 280-283.
  73. Chen M, Kilgore N, Lee KH, Chen DF (2006) Rubrisandrins A and B, lignans and related anti-HIV compounds from Schisandrarubriflora. J Nat Prod 69: 1697-1701.
  74. Lei C, Huang SX, Chen JJ, Pu JX, Yang LB, et al. (2007) Lignans from Schisandrapropinqua var. propinqua. Chem Pharm Bull (Tokyo) 55: 1281-1283.
  75. Yamada Y, Hsu CS, Iguchi K, Suzuki S, Hsu HY, et al. (1976) Structure of kadsuric acid. A new seco-triterpenoid from Kadsura japonica dunal. Chemistry letters 12: 1307-1310.
  76. Gao XM,Pu JX, Huang SX, Yang LM, Huang H, et al. (2008) Lignans from Kadsuraangustifolia. J Nat Prod 71: 558-563.
  77. Chen DF, Zhang SX, Xie L, Xie JX, Chen K, et al. (1997) Anti-AIDS agents-XXVI. Structure-activity correlations of gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorganic & Medicinal Chemistry 5: 1715-1723.
  78. Chen M, Liao ZH, Xu XM, Wen Y, Sun M, et al. (2008) Neglschisandrins C-D: two new dibenzocyclooctadiene lignans from Schisandraneglecta. Molecules 1: 1148-1155.
  79. Chen M, Xu XM, Liao ZH, Dong L, Li L (2008) Huang Neglschisandrins A-B: two new dibenzocyclooctadiene lignans from Schisandraneglecta. Molecules 13: 548-555.
  80. Li H, Wang L, Yang Z, Kitanaka S (2007) Kadsuralignans H-K from Kadsuracoccinea and their nitric oxide production inhibitory effects. J Nat Prod 70: 1999-2002.
  81. Shen YC, Lin YC, Cheng YB, Chang CJ, Lan TW, et al. (2008) New oxygenated lignans from Kadsuraphilippinensis. Helvetica ChimicaActa 91: 483-494.
  82. Pu JX, Yang LM, Xiao WL, Li RT, Lei C, et al. (2008) Compounds from Kadsuraheteroclita and related anti-HIV activity. Phytochemistry 69: 1266-1272.
  83. Liu HT, Xu LJ, Peng Y, Yang JS, Yang XW, et al. (2009) Complete assignments of 1H and 13C NMR data for new dibenzocyclooctadiene lignans from Kadsuraoblongifolia. MagnResonChem 47: 609-612.
  84. Lu Y, Chen DF, Kadsutherin D (2008) A new dibenzocyclooctadiene lignan from Kadsura species. Natural Product Research 22: 1344-1349.
  85. Li XN,Pu JX, Du X, Yang LM, An HM, et al. (2009) Lignans with anti-HIV activity from Schisandrapropinqua var. sinensis. J Nat Prod 72: 1133-1141.
  86. Shen YC, Lin YC, Cheng YB, Chiang MY, Liou SS, et al. (2009) Dibenzocyclooctadiene lignans from Kadsuraphilippinensis. Phytochemistry 70: 114-120.
  87. Chen YG, Xie YY, Cheng KF, Cheung KK, Qin GW (2001) Compounds from Kadsuraananosma. Phytochemistry 58: 1277-1280.
  88. Ma WH, Lu Y, Huang H, Zhou P, Chen DF (2009) Schisanwilsonins A-G and related anti-HBV lignans from the fruits of Schisandrawilsoniana. Bioorg Med ChemLett 19: 4958-4962.
  89. Yang GY, Fan P, Wang RR, Cao JL, Xiao WL, et al. (2010) Dibenzocyclooctadiene lignans from Schisandralancifolia and their anti-human immunodeficiency virus-1 activities. Chem Pharm Bull (Tokyo) 58: 734-737.
  90. Chen DF, Xu GJ, Yang XW, Hattori M, Tezuka Y, et al. (1992) Dibenzocyclo-octadiene lignans from Kadsuraheteroclita. Phytochemistry 31: 629-632.
  91. Kuo YH,Kuo LM, Chen CF (1997) Four New C19 Homolignans, Schiarisanrins A, B, and D and Cytotoxic Schiarisanrin C, from Schizandraarisanensis. J Org Chem 62: 3242-3245.
  92. Chen YG, Wang P, Lin ZW, Sun HD, Qin GW, et al. (1998) Dibenzocyclooctadiene lignans from Kadsuraangustifolia. Phytochemistry 48: 1059-1062.
  93. Nakatan N, Ikeda K, Kikuzaki H, Kido M, Yamaguchi Y (1988) Diaryldimethylbutane lignans from Myristicaargentea and their antimicrobial action against streptococusmutans. Phytochemistry 27: 3127-3129.
  94. Liu HT,Xu LJ, Peng Y, Yang XW, Xiao PG (2009) Two new lignans from Schisandrahenryi. Chem Pharm Bull (Tokyo) 57: 405-407.
  95. Liu JS, Huang MF, Ayer WA, Nakashima TT (1984) Structure of enshicine from Schisandrahenryi. Phytochemistry 23: 1143-1145.
  96. Lamuela-RaventosRM, Cassidy A, Hanleyntial B (2000) Isoflavones, lignans and stilbenes-Origins.metabolism and potetry80: 1044-1062.
  97. Ford JD, Davin LB (1999) Lewis Plant lignans and health: cancer chemoprevention and biotechnological opportunities. Basic life sciences 66: 675-694.
  98. Thompson LU (1998) Experimental studies on lignans and cancer. BaillieresClinEndocrinolMetab 12: 691-705.
  99. Charlton JL (1998) Antiviral activity of lignans. J Nat Prod 61: 1447-1451.
  100. Ghisalberti EL (1997) Cardiovascular activity of naturally occurring lignans. Phytomedicine 4: 151-166.
  101. Ward RS (1997) Lignans, neolignans and related compounds. Natural Product Reports 14: 43-74.
  102. Chang C-W, Lin M-T, Lee S-S, Liu KCSC, Hsu F-L, et al. (1995) Differential inhibition of reverse transcriptase and cellular DNA polymerase-a activities by lignans isolated from Chinese herbs, Phyllanthusmyrtifolius Moon, and tannins from Lonicera japonica Thunb and Castanopsishystrix. Antiviral Research 27: 367-374.
  103. Ward RS (1995) Lignans, neolignans, and related compounds. Nat Prod Rep 12: 183-205.
  104. Jensen S, Hansen J, Boll PM (1993) Lignans and neolignans from piperaceae. Phytochemistry 33: 523-530.
  105. Ward RS (1993) Lignans, neolignans, and related compounds. Nat Prod Rep 10: 1-28.
  106. Morimoto T, Chiba M, Achiwa K (1992) Development of modified chiral dioxolanebisphosphine ligands and their use in efficient asymmetric synthesis of naturally occurring lignans.Heterocycles 33: 435-462.
  107. WardRS (1990) Asymmetric synthesis of lignans. Tetrahedron 46: 5029-5041.
  108. Kuo YH (1989) Studies on several naturally occurring lignans. Gaoxiong Yi XueKeXueZaZhi 5: 621-624.
  109. Adlercreutz H,Höckerstedt K, Bannwart C, Bloigu S, Hämäläinen E, et al. (1987) Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem 27: 1135-1144.
  110. Whiting DA (1987) Lignans, neolignans, and related compounds. Nat Prod Rep 4: 499-525.
  111. MacRae WD, Neil Towers GH (1984) Towers Biological activities of lignans. Phytochemistry 23: 1207-1220.
Citation: Fazary AE, Alfaifi MY, Saleh KA, Alshehri MA, Elbehairi SEI (2016) Bioactive Lignans: A Survey Report on their Chemical Structures? Nat Prod Chem Res 4:226.

Copyright: © 2016 Fazary AE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.